
USTC Home Work
PB22051087 YufengPeng

ICS.A

1
• The loop runs 65 times.

• It is x144A stored in R3.

2
• RET pops the return address from the system stack, which is typically used for subroutine calls

and not for interrupts. Interrupts push the return address to the supervisor stack. So, if RET
is used instead of RTI, the program will return to an incorrect address, leading to undefined
behavior.

• When an interrupt occurs, the LC-3 switches from user mode to supervisor mode. The RTI
instruction is designed to restore the previous privilege mode (user mode) after servicing the
interrupt. If RET is used instead, the system remains in supervisor mode even after returning
from the interrupt service routine. This could lead to serious security issues as subsequent user
mode code would be executed in supervisor mode.

3
• The student wants to print I.

• No he can’t. Because when the program execute the second JSR instruction, the address stored
in R7 will be changed, and he didn’t store the former address so the RET instruction right after
the label A can not work correctly.

4
• Signal X is wehther Access Violation happened.

• It will be 1 if it is user mode but trying to access the privilege aera.

5
• In LC-3, we can check if there is a new character input from the keyboard by checking the highest

bit of the Keyboard Status Register (KBSR). If the highest bit is 1, then there is a new character
input.

• Once a new character input is detected, we can read this character from the keyboard by reading
the lower 8 bits of the Keyboard Data Register (KBDR).

• To display the read character on the screen, you can use the TRAP x21 instruction. This instruc-
tion will output the character stored in the R0 register to the console.

• Here is a simple LC-3 assembly code snippet that demonstrates this process:
1 .ORIG x3000
2 LEA R0, KBDR
3 LD R1, KBSR
4 WAIT LDR R2, R1, #0
5 BRz WAIT
6 LDR R0, R0, #0
7 TRAP x21
8 HALT
9 KBSR .FILL xFE00

10 KBDR .FILL xFE02
11 .END

Page 1

USTC Home Work
PB22051087 YufengPeng

ICS.A

6
• Here’s the completed program:
1 HEX_INPUT
2 ST R1, SAVE_R1 ; R1 = Constant 1
3 ST R2, SAVE_R2 ; R2 = Constant 2
4 ST R3, SAVE_R3 ; R3 = Chars left (counter)
5 ST R4, SAVE_R4 ; R4 = **DELETED**
6 LD R1, C1
7 LD R2, C2
8 AND R3, R3, #0
9 ADD R3, R3, #4

10 AND R0, R0, #0 ; R0 stores our result
11 GETCHAR
12 ; **DELETED**
13 ADD R0, R0, R0
14 ADD R0, R0, R0
15 ADD R0, R0, R0
16 ADD R0, R0, R0
17 WAIT
18 LDI R4, KBSR ; Check keyboard status
19 BRzp WAIT ; **DELETED**
20 LDI R4, KBDR ; Get KBDR
21 ADD R4, R4, R1 ; Check if it is a letter
22 BRzp LETTER ; Got a capital letter
23 ADD R4, R4, R2 ; Not a letter -> digit
24 BR CONTINUE
25 LETTER
26 ADD R4, R4, #10 ; **DELETED**
27 CONTINUE
28 ADD R0, R0, R4 ; Add to result
29 ADD R3, R3, #-1 ; Decr counter
30 BRp GETCHAR ; Wait for another char
31 ; Restore regs
32 LD R1, SAVE_R1
33 LD R2, SAVE_R2
34 LD R3, SAVE_R3
35 LD R4, SAVE_R4
36 RET
37

38 ; Data
39 C1 .FILL #-65 ; **DELETED**
40 C2 .FILL #-48 ; **DELETED**
41 KBSR .FILL xFE00
42 KBDR .FILL xFE02
43 SAVE_R1 .BLKW 1
44 SAVE_R2 .BLKW 1
45 SAVE_R3 .BLKW 1
46 SAVE_R4 .BLKW 1

• The four consecutive ADD R0, R0, R0 instructions are used to shift the contents of R0 left by 4
bits. This is equivalent to multiplying the value in R0 by 16 (or 24). This is done because each
hex digit represents 4 bits, so when a new hex digit is read, the previous digits need to be shifted
left by 4 bits to make room for the new digit.

• This instruction is necessary because we don’t know what value R0 holds before the subroutine
is called. Since R0 is used to store the result, we need to ensure that it starts from 0. If we
don’t clear R0, the final result could be incorrect because it would include whatever value was
previously in R0.

Page 2

USTC Home Work
PB22051087 YufengPeng

ICS.A

7
• The output of the program will be the string H3ll0_W0r1d followed by the character !, which is

the ASCII representation of the decimal number 33.

• The LC-3 uses 16-bit words, so each instruction or piece of data takes up 2 bytes. The program
has 5 instructions (LEA, PUTS, LD, OUT, HALT), 1 label with a string of length 11 (including the
null terminator), and 1 label with a single value. So, the total memory occupied by the program
is:

5× 2 + 11× 2 + 1× 2 = 34Bytes

8
• If a program does not check the Keyboard Status Register (KBSR) before reading from the

Keyboard Data Register (KBDR), it might read stale or invalid data.

• If the keyboard does not check the Keyboard Status Register (KBSR) before writing to the
Keyboard Data Register (KBDR), it might overwrite the existing data in the KBDR before it
has been read by the program.

• The problem of a program not checking the Keyboard Status Register (KBSR) before reading
from the Keyboard Data Register (KBDR) is more likely to occur. This is because the responsi-
bility of checking the KBSR falls on the programmer who writes the code. If the programmer is
not aware of the need to check the KBSR before reading the KBDR, or if they forget to do so,
the program could read stale or invalid data.
On the other hand, the problem of the keyboard not checking the KBSR before writing to the
KBDR is less likely to occur. This is because the process of writing to the KBDR is typically
managed by the hardware or the operating system, not by the programmer. The hardware or
operating system would be designed to handle this correctly, so it’s less likely that this problem
would occur.

9
The output of this program will be F !.

10

Page 3

	
	
	
	
	
	
	
	
	
	

