
USTC Howme Work

PB22051087 彭煜峰

ICS.A

T 1

1. Convert these decimal numbers to 8-bit 2’s complement numbers:

• −144

−114 =
7∑

i=0

bi × 2i

Since −114 is negative, we can convert the magnitude of −144 first ,which is actually

114.Because 144 is even and positive, so we can inffer that b0 = 0 , b7 = 0 .After that we

subtract 0 from both side of the equation ,and than divide both side of equation by 2 :

57 =
6∑

i=1

bi × 2i−1

Obviously 57 is odd,so we can inffer that b1 = 1 ,and than we subtract 1 form both side of

the equation and divide by 2:

28 =
6∑

i=2

bi × 2i−2

According to the previous steps,we can inffer that b2 = 0,and:

14 =
6∑

i=3

bi × 2i−3

Countinue to calculate and we will get b3 = 0 and:

7 =
6∑

i=4

bi × 2i−4

Finally we get b4 = 1, b5 = 1, b6 = 1 , so

114 = 01110010

than we add 1 to the complement of 01110010:

−144 = 10001110

• +81

+81 =
7∑

i=0

bi × 2i

Same as the last work,we get:

+81 = 01010001

第 1 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

T 2

1. What’s the smallest and largest number that can be represented by an

8-bit 2’s complement number? (Answer in decimal)

• The biggist number is:

27 − 1 = 127

And the smallest number is:

−28 = −128

2. Try to determine the range that an N-bit 2’s complement number can

represent. (Answer in decimal)

• The range that an N-bit 2’s complement number is:

−2N ⩽ The number ⩽ +2N − 1

T 3

1. Is there a negative integer that has identical 2’s complement represen-

tation and original code in binary (8-bit)? If so, what is it? (Answer in

decimal)

• -64 has identical 2’s complement representation and originalcode in binary (8-bit).

X = −
(
1× 27

)
+X

X = −
(
26
)

X = −64

T 4

1. Under what circumstances will the program print a < b while actually

a ⩾ b?

• This happens when integer overflow occurs. For example we define a = INT MAX, b = −1,

the program will print a < b but actually a ⩾ b .

2. What if we change the code to the following? (Also, the numbers given

are guaranteed to be in the range of unsigned int .)

• The code will accurately compare the unsigned int values a and b and print ”a < b” if a

is less than b, and ”a ⩾ b” if a is greater than or equal to b.

第 2 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

T 5

1. Write the decimal equivalents for the IEEE floating point number below.

0 10001011 00000000001000000001000

•
a31 = 0 ⇒ X ⩾ 0

a23 ∼ a30 = 10001011 (binary) = 139 ⇒ The Exponent bit is: 139− 127 = 12

a0 ∼ a22 = 00000000001000000001000 = 1.00000000001000000001000

⇒ X = +1.00000000001000000001000 (binary)× 212 = 4098.003906

T 6

1. What is the smallest number that can be represented in IEEE floating

point format with 32 bits regardless of infinity? What about the smallest

positive number? (Answer in binary)

• Sign Bit: 1 (for negative)

Exponent Bits: 11111110

Mantissa Bits (all 1):

11111111111111111111111 = 1.11111111111111111111111

= 2− 0.00000000000000000000001

Which is −1× (2− 2−23)× 2127 = −3.4028× 1038

• Sign Bit: 0 (for positive)

Exponent Bits : 00000000

Mantissa Bits:

00000000000000000000001 = 0.00000000000000000000001

= 2−23

Which is (−1)
0 × 2−23 × 2−126 = 1.4013× 10−45

第 3 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

T 7

1. Can you list all the integers whose IEEE floating point representations are

exactly the same as their 2’s complement integer representations? (Answer

in decimal)

• The numbers are:

1. -834214802 2’s Complement = 11001110010001101110010001101110 = IEEE

2. 0 2’s Complement = 00000000000000000000000000000000 = IEEE

3. 1318926965 2’s Complement = 01001110100111010011101001110101 = IEEE

The code of the program to solve this task will be attached to the end of the

document.

T 8

1. The code below uses three XOR operation to swap two integers. void

swap(int *a, int *b)

(1) Fill in the blanks to complete the code.

• The code is below:

1 void swap(int *a, int *b) {

2 *a = *a ^ *b;

3 *b = *a ^ *b;

4 *a = *a ^ *b;

5 }

(2) Is there anything wrong to use the swap function in the sorting function below?

If so, how can you fix it?

• In the given sort function, we are passing pointers to swap(a + i, a + min);. The swap

function we’ve defined expects pointers to integers (integers’ addresses), but we are passing

pointers to pointers to integers. To fix this, we need to dereference the pointers we’re passing

to swap:

1 void sort(int *a, int n) {

2 // sort a[0] ~ a[n - 1]

3 for (int i = 0; i < n - 1; i++) {

4 int min = i;

5 for (int j = i; j < n; j++) {

第 4 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

6 if (a[j] < a[min]) {

7 min = j;

8 }

9 }

10 swap(&a[i], &a[min]); // Fix

11 }

12 }

T 9

1. You’re required to draw circuits that can calculate the following expres-

sions:

• y = kx+ b • p = (m+ n) (m− n)

• c2 = a2 + b2
• m = v1 × w1 + v2 × w2

第 5 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

T 10

1. How many bits do we need to represent a single character?

• The number of bits needed to represent a single character depends on the total number

of characters we want to represent. In this case, we want to represent 26 uppercase let-

ters (A-Z), 26 lowercase letters (a-z), 10 digits (0-9), space, and ”.”. That’s a total of

(26 + 26 + 10 + 2 = 64) characters.To represent a single character using binary, we would

need to use at least 6 bits because 26 = 64, which is enough to represent 64 unique

characters.

2. How many bits do we need to represent a string of characters?

• To represent a string of characters, we would need to multiply the number of bits per

character by the length of the string. If we use 6 bits per character, a string of N characters

would require 6×N = 6N bits.

3. Assume that we use 0 to represent A , 1 to represent B , and so on.

So we use 63 to represent ’.’ What is the binary representation of ’Hello

World.’ ?

• In this case ,we can inffer that ’Hello World.’ is represented by 12 numbers , which is :

7(H) 30(e) 37(l) 37(l) 40(o) 62(’space’)

22(W) 40(o) 43(r) 37(l) 29(d) 63(’.’)

Then we code these numbers to 6-bit binary:

000111 011110 100101 100101 101000 111110 010110 101000 101011 100101 011101 111111

第 6 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

Code for T7

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdlib.h>

4

5 union IntToBinary {

6 int integer;

7 unsigned char bytes[sizeof(int)];

8 };

9

10 union FloatToBinary {

11 float floating_point;

12 unsigned int binary;

13 };

14

15 char* floatToBinary(float num) {

16 static char binary[sizeof(float) * 8 + 1]; // +1 for ’\0’

17 union FloatToBinary converter;

18 converter.floating_point = num;

19

20 int index = 0;

21 for (int i = sizeof(unsigned int) - 1; i >= 0; i--) {

22 for (int j = 7; j >= 0; j--) {

23 binary[index ++] = ((converter.binary >> (i * 8 + j

)) & 1) + ’0’;

24 }

25 }

26 binary[index] = ’\0’; // the end

27

28 return binary;

29 }

30

31 char* intToBinary(int num) {

32 static char binary[sizeof(int) * 8 + 1]; // +1 for ’\0’

33 union IntToBinary converter;

34 converter.integer = num;

35

36 int index = 0;

37 for (int i = sizeof(int) - 1; i >= 0; i--) {

第 7 页

USTC Howme Work

PB22051087 彭煜峰

ICS.A

38 for (int j = 7; j >= 0; j--) {

39 binary[index ++] = ((converter.bytes[i] >> j) & 1)

+ ’0’;

40 }

41 }

42 binary[index] = ’\0’; // the end

43

44 return binary;

45 }

46

47 int compareArrays(const char* arr1 , const char* arr2 , int size

) {

48 return memcmp(arr1 , arr2 , size) == 0; // using memcmp to

compare

49 }

50

51 int main() {

52 int num;

53 char *F , *In;

54

55 for(num = INT_MIN ; num <= INT_MAX -1 ; num++){

56 F = floatToBinary ((float)num);

57 In = intToBinary ((int)num);

58

59 if(compareArrays(F,In ,32)){

60 printf("\nThe␣number␣is␣%d␣,2’s␣Complent:␣%s␣,IEEE

:␣%s\n" , num , In , F);

61 }

62 }

63

64 if(floatToBinary ((float)INT_MAX) == intToBinary(INT_MAX)){

65 printf("%d" , INT_MAX);

66 }

67

68 return 0;

69 }

第 8 页

